Honey, I Shrunk the Cube

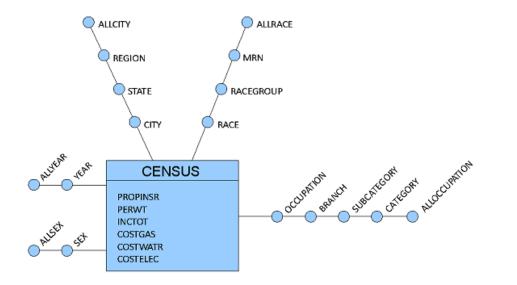
<u>Matteo Golfarelli</u> Stefano Rizzi

University of Bologna - Italy

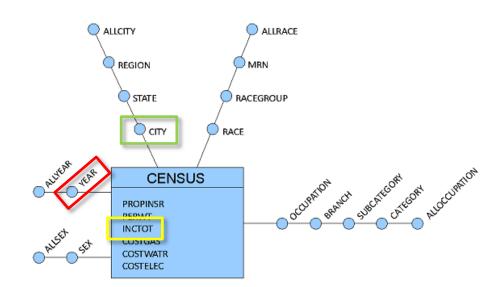
- Motivating scenario
- The shrink approach
- A Heuristic algorithm for shrinking
- Experimental results
- Summary and future work

 OLAP is the main paradigm for querying multidimensional databases

 OLAP is the main paradigm for querying multidimensional databases



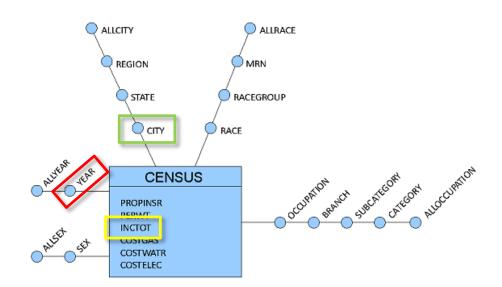
- OLAP is the main paradigm for querying multidimensional databases
 - An OLAP query asks for returning the values of one or more numerical measures, grouped by a given set of analysis attributes



Average income in 2013 for each city

thousands of tuples in the resultset!!

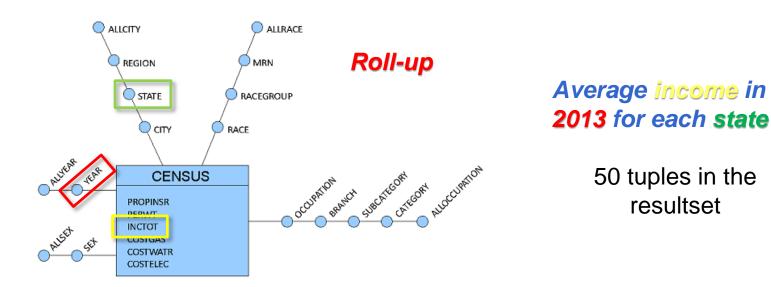
- OLAP is the main paradigm for querying multidimensional databases
 - An OLAP query asks for returning the values of one or more numerical measures, grouped by a given set of analysis attributes
 - An OLAP analysis is typically composed by a sequence of queries (called session). Each obtained by transforming the previous one through the application of an OLAP operation



Average income in **2013** for each city

thousands of tuples in the resultset!!

- OLAP is the main paradigm for querying multidimensional databases
 - An OLAP query asks for returning the values of one or more numerical measures, grouped by a given set of analysis attributes
 - An OLAP analysis is typically composed by a sequence of queries (called session), each obtained by transforming the previous one through the application of an OLAP operation



Information flooding

- One of the problems that affect OLAP explorations is the risk the size of the returned data compromises their exploitation
 - more detail gives more information, but at the risk of missing the overall picture, while focusing on general trends of data may prevent users from observing specific small-scale phenomena

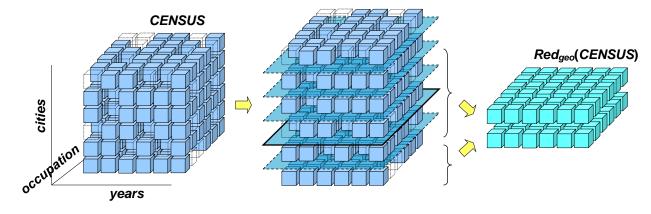
Many approaches have been devised to cope with this problem:

- Query personalization
- Intensional query answering
- ✓ Approximate query answering
- ✓ OLAM On-Line Analytical Mining
- The shrink operator falls in the OLAM category
 - ✓ it is based on a clustering approach
 - it can be applied to the cube resulting from an OLAP query to decrease its size while controlling the loss in precision

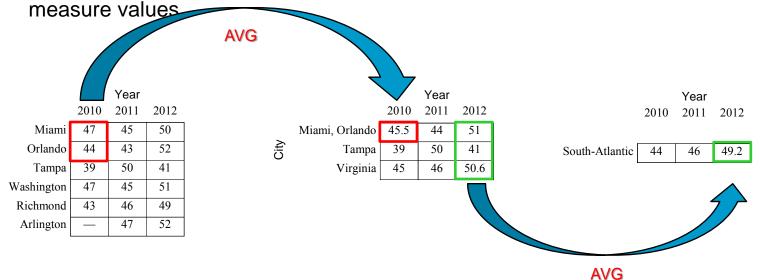
The Shrink intuition

City

The cube is seen as a set of slices, each slice corresponds to a value of the finest attribute of the shrinked hierarchy



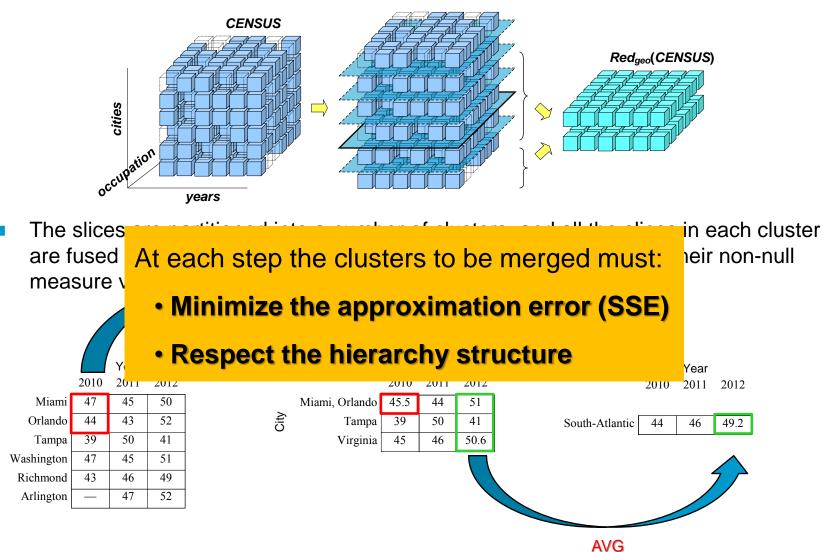
The slices are partitioned into a number of clusters, and all the slices in each cluster are fused into a single, approximate *f-slice* (reduction) by averaging their non-null



The Shrink intuition

City

The cube is seen as a set of slices, each slice corresponds to a value of the finest attribute of the shrinked hierarchy



Shrink vs Roll-Up

A roll-up operation:

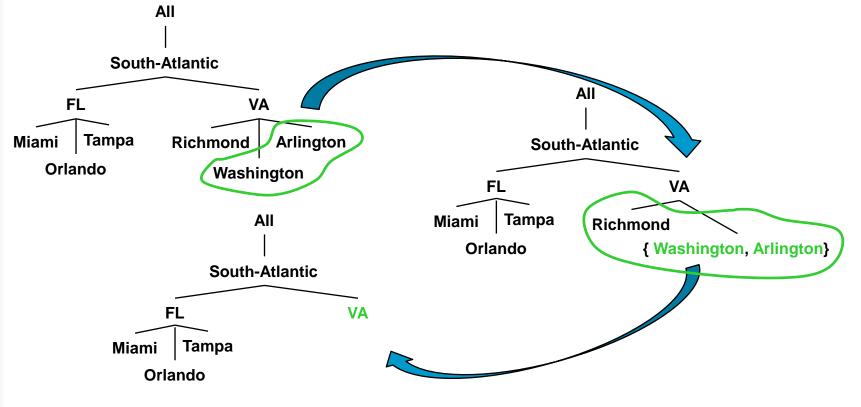
- reduces the size of the pivot table based on the hierarchy structure only
- \checkmark the level of detail is changed for all the attribute values at the same time
- the size of the result depends on the attribute granularity and is not tuned by the user

A shrink operation:

- reduces the size of the pivot table considering the information carried by each slice while preserving the hierarchy structure
- ✓ the level of detail of the result is changed only for specific attribute values
- ✓ the size of the result is under the user control

The hierarchy constraints

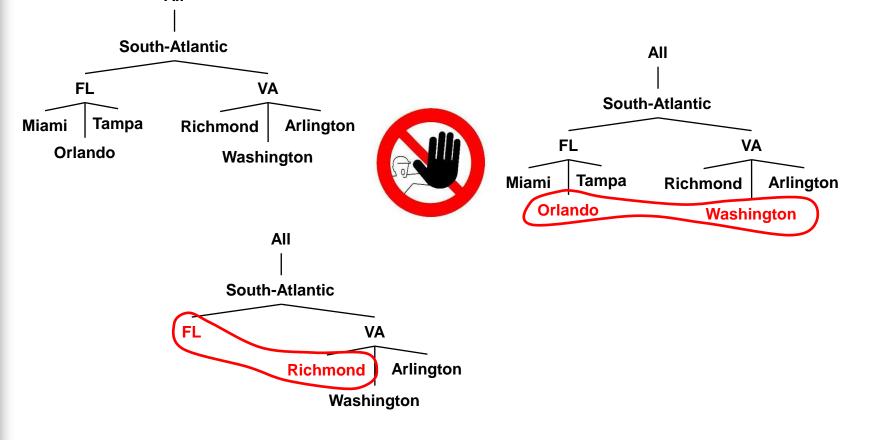
- To preserve the semantics of hierarchies in the reduction, the clustering of the f-slices at each fusion step must meet some further constraints besides disjointness and completeness:
 - Two slices corresponding to values V' and V'' can be fused in a single f-slice only if both V' and V'' roll-up to the same value of the ancestor attribute



 When a slice includes all the descendants of a given value, it is represented by that value

The hierarchy constraints

- To preserve the semantics of hierarchies in the reduction, the clustering of the f-slices at each fusion step must meet some further constraints besides disjointness and completeness:
 - Two slices corresponding to values V' and V" can be fused in a single f-slice only if both V' and V" roll-up to the same value of the ancestor attribute



The approximation error

The SSE of a reduction can be incrementally computed

The SSE of a slice V obtained merging two slices V' and V'' can be computed from the SSEs of the slices to be merged as follows:

 $SSE(F^{V'\cup V''}) = SSE(F^{V'}) + SSE(F^{V''}) + \sum_{\bar{g}\in Dom(b)\times Dom(c)\dots} \frac{H'_{\bar{g}}\cdot H'_{\bar{g}}}{H'_{\bar{g}} + H'_{\bar{g}}} (F^{V'}(\bar{g}) - F^{V''}(\bar{g}))^2$

- ✓ $H'_{\bar{g}}$ is the number of non-null V' descendants
- ✓ $F^{V'}(\bar{g})$ is the value of the f-slice $F^{V'}$ at coordinate \bar{g}
- Incremental computation of the errors deeply impacts on the computation time of the shrink algorithms proposed next

- **Fixed size-reduction problem**: find the reduction that yields the minimum SSE among those whose size is not larger than size_{max}
 - ✓ The search space has exponential size
 - The presence of hierarchy-related constraints reduces the problem search space
 - Worst case when no such constraints are present: the number of different partitions of a set with |Dom(a)| elements

$$B_{|Dom(a)|} = \sum_{k=0}^{|Dom(a)|-1} {|Dom(a)|-1 \choose k} B_k$$

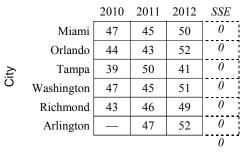
A heuristic approach is needed to satisfy the real-time computation required in OLAP

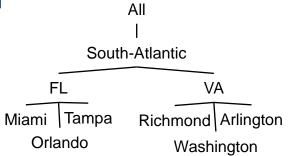
- We adopted an agglomerative hierarchical clustering algorithm with constraints
 - the algorithm starts from a clustering, where each cluster corresponds to an fslice with a single value of the hierarchy.
 - merging two clusters means merging two f-slices
 - ✓ As a merging criterion we adopted the *Ward's minimum variance method*
 - at each step we merge the pair of f-slices that leads to minimum \triangle SSE increase
 - Two f-slices can be merged only if the resulting reduction preserves the hierarchy semantics
 - The agglomerative process is stopped when the next merge meets the constraint expressed by *size_{max}*

Our approach can solve the symmetric problem too

Fixed error-reduction problem: find the reduction that yields the minimum size among those whose SSE is not larger than SSE_{max}

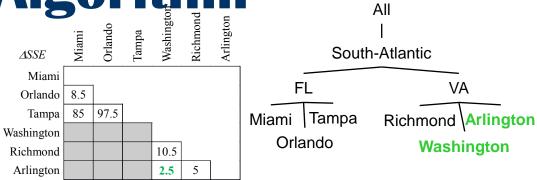
Year

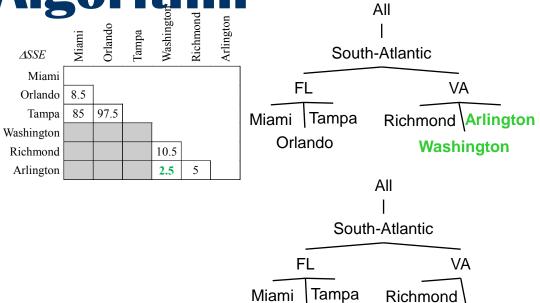




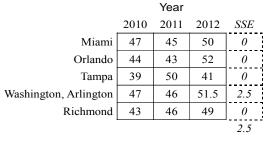
A Heuristic Algorithm Year 2010 2011 2012 SSE ASSE IN United With Marking Mark

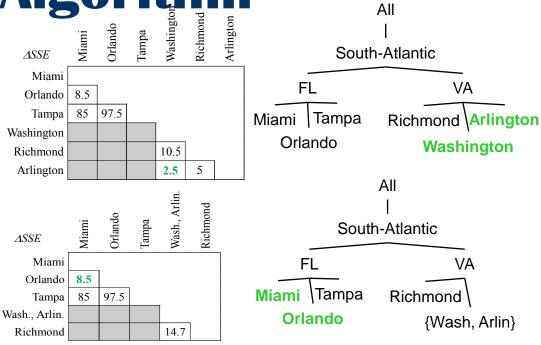




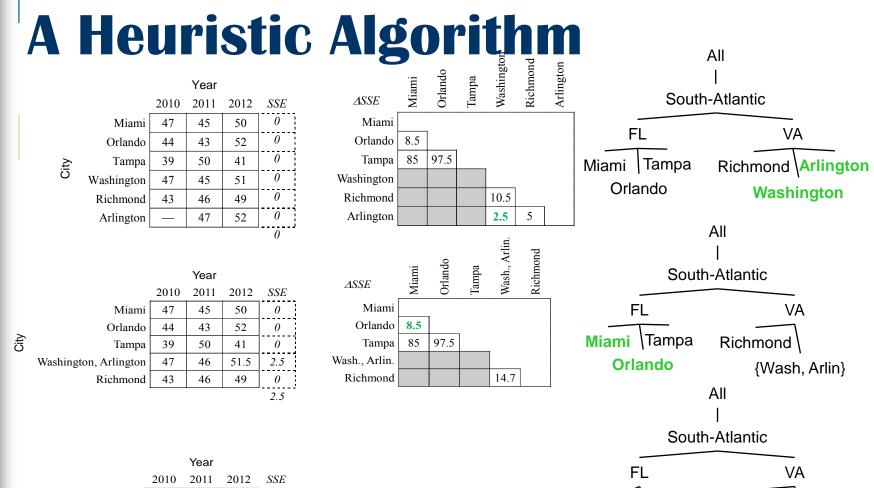


Orlando {Wash, Arlin}





City



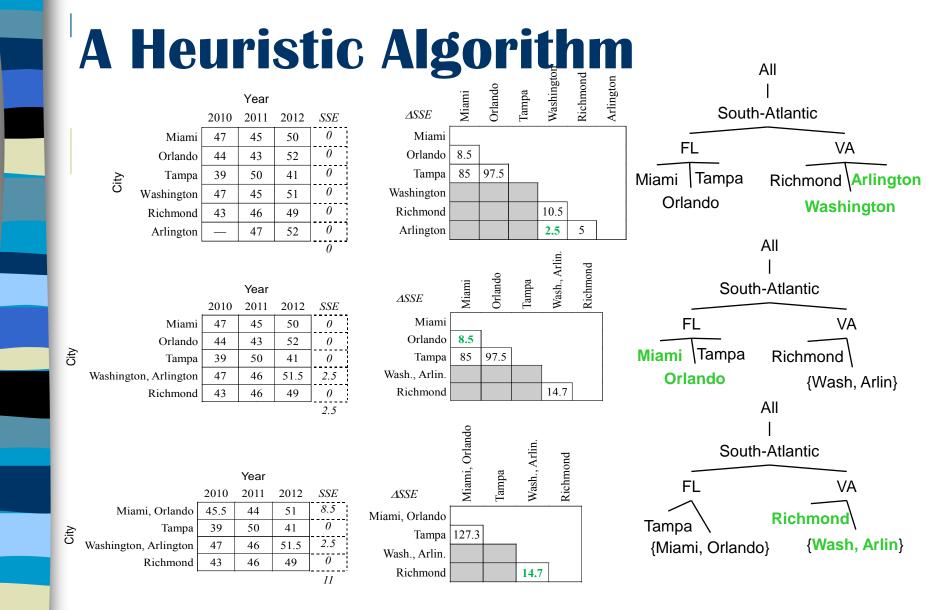
Richmond

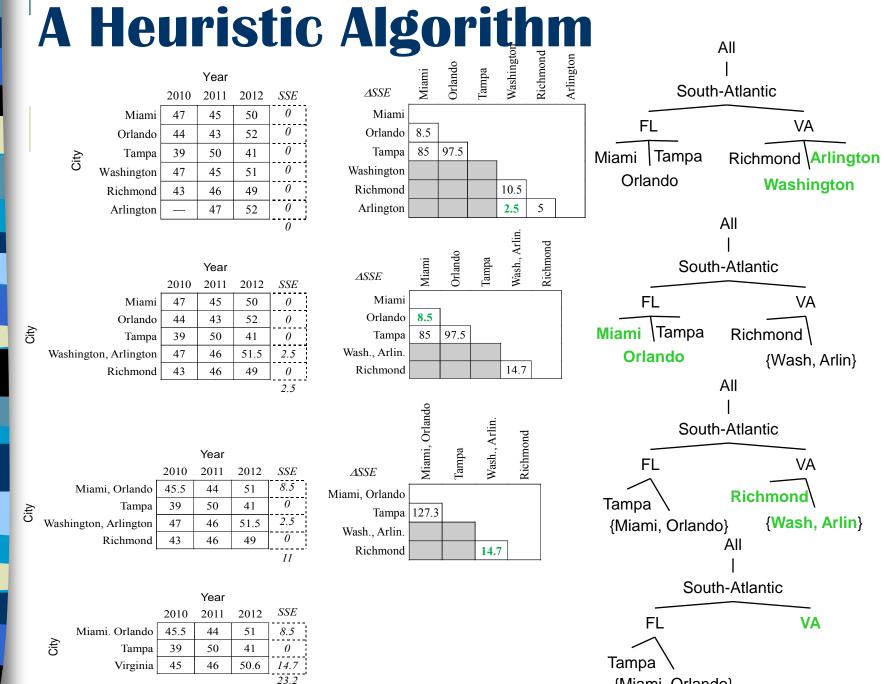
{Wash, Arlin}

Tampa

{Miami, Orlando}

City



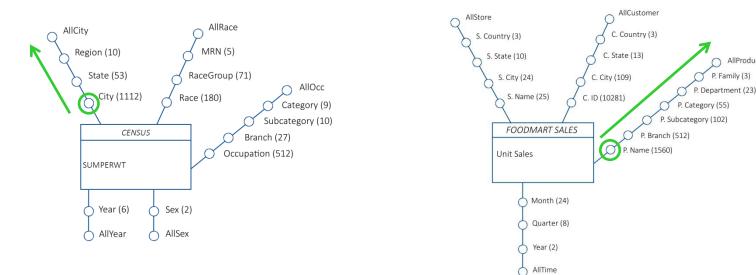


{Miami, Orlando}

	ieai		
	2010	2011	2012
liami. Orlando	45.5	44	51
Tampa	39	50	41
Virginia	45	46	50.6

Experimental Results

- 2 different datasets adopted, 4 reduction problems
 - **Different hierarchy features** \checkmark
 - Different sparsity \checkmark
 - **Different sizes** \checkmark



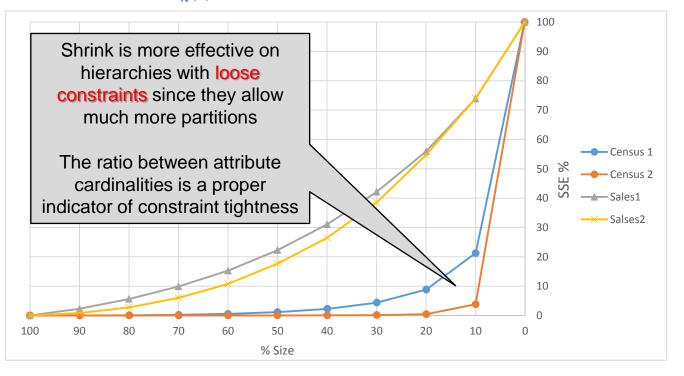
AllProduct

Fact	#Initial f-slice	# facts	#not-null facts	Density
Census1	1112	$\approx 34 \text{ M}$	≈ 245 K	0,75%
Census2	1112	≈ 50 K	≈ 12 K	24,17%
Sales1	1560	≈ 34 M	≈ 200 K	0,58%
Sales2	1560	≈ 28 K	≈ 6 K	22,20%

Aprroximation errors

The SSE has been normalized to allow comparisons

✓ $SSE\% = \frac{SSE(Red_h(C))}{SSEMAX_h(C)}$

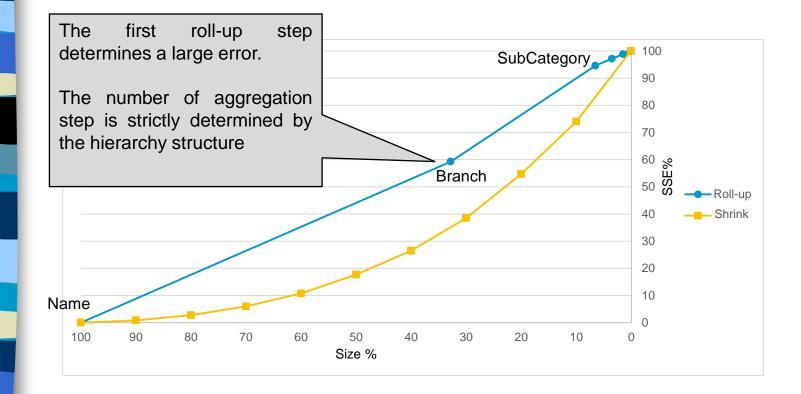


Further cube features that impact on effectiveness are:

- ✓ Sparsity: the higher the sparsity, the lower the SSE increase
- Variance of the values: the higher the variance the cells to be merged, the higher the SSE increase

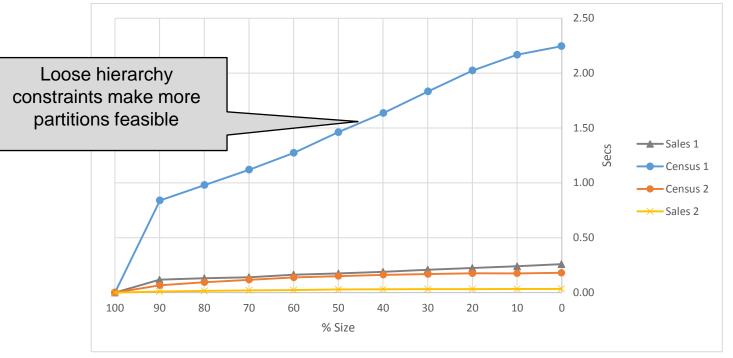
Shrink vs Roll-up

We compared the two operators on the Sales 2 cube applying the AVG operator when rolling-up



Efficiency

- Tests are run on a Pentium i5 quad-core (2.67 GHz, 4 GB RAM)
 - ✓ Windows 7-64 bits



- Further cube features that impact on efficiency are:
 - ✓ Size of the f-slice

- ✓ Size of the cube
- A shrink step requires less than 2 milliseconds in all of the previous test

Optimal vs Greedy

- We adopted a branch-and-bound approach based on an optimal enumeration process
 - ✓ We set $size_{max} = 0.3 |Dom(a)|$
 - Possible only on toy examples

#f-slice	# initial facts	# facts at <i>size_{max}</i>	Error	B&B execution time
23	184	90	8.31%	3 secs
24	192	90	0%	4 secs
27	135	60	0%	3 mins 12 secs
53	543			> 6 hours

Conclusions

- Shrink: a new OLAP operation to cope with the information flooding problem
 - We proposed a heuristic implementation
 - We analyzed its effectiveness and efficiency
 - Now working on:
 - Effectiveness: extending the formulation of the operator to work on several hierarchies simultaneously
 - Efficiency: studying smarter heuristics and different implementations of the shrink idea
 - The *eager* shrink operator collapses at each step all the children of a given value

- Optimality: studying optimal algorithms exploiting a column generation technique in a set partitioning formulation
- Visualization: find out visual metaphors for representing complex pivot tables